Journal of Organometallic Chemistry, 172 (1979) 391–395 © Elsevier Sequioia S A, Lausanne – Printed in The Netherlands

SYNTHESIS OF 2- AND 4-ARYL-*m*-CARBORANES AND ELECTRONIC EFFECTS OF THE 4-*m*-CARBORANYL GROUP *

VN KALININ^{*}, NI KOBEL'KOVA and LI ZAKHARKIN Institute of Organo-Element Compounds USSR Academy of Sciences, Moscow (USSR) (Received November 28th, 1978)

Summary

Gas-phase isomerization of 3-aryl-o-carboranes under vacuum in a flow at $550-600^{\circ}$ C leads to the formation of equal amounts of 2- and 4-aryl-*m*-carboranes which are easily separated by column chromatography Determination of ionization constants of 4-(*p*- and *m*-carboxyphenyl)-*m*-carboranes and measurement of ¹⁹F chemical shifts in NMR spectra of 4-(*p*- and *m*-fluorophenyl)-*m*-carboranes have shown that the 4-*m*-carboranyl group as a substituent displays electron properties similar to those of a hydrogen atom

Introduction

At present, only a few members of a series of *B*-arylcarboranes are known 1,2-Dicarbollide [2-7] and 1,7-dicarbollide [8] ions with arylboron dihalide give 3-aryl-o- and 2-aryl-m-carboranes 3-, 4-, and in certain cases 9-aryl-o-carboranes [9,11] were synthesized by the interaction of diamons of dicarbodode-cacarborates [14] with arylmagnesium halide followed by the oxidation of *B*-aryl diamons The general method of preparation of 2- and 4-substituted *m*-carboranes by gas-thermal isomerization of 3-substituted o-carboranes under vacuum in the flow was developed by us earlier [12,13] The present paper discusses isomerization of 3-aryl-o-carboranes into *B*-aryl-m-carboranes on the basis of the method mentioned above

Discussion

B-Arylcarboranes constitute an interesting class of compounds which enable quantitative assessment of the electronic effects of carboranyl groups We found that 3-aryl-o-carboranes, when passed through a quartz tube at $550-600^{\circ}C$

^{*} Preliminary communication see ref 1

under vacuum, easily isomerize into 2- and 4-substituted m-carboranes in approximately equal amounts (eq 1) Total yield of *B*-aryl-*m*-carboranes is high The

$$\frac{HC-CH}{1 \text{ mmHg}} + CB_{10}H_{9}(Ar-2)CH + HCB_{10}H_{9}(Ar-4)CH$$
(1)

$$Ar = -0, \quad -0 - F, \quad -0 - CH_3, \quad -0 \\ F, \quad -0 \\ CH_3, \quad -0 \\ F, \quad -0 \\ CH_3, \quad -$$

formation of 2-aryl-*m*-carboranes was proven by comparing their properties with those of authentic samples obtained earlier [8], the structure of 4-aryl-*m*carboranes was determined by X-ray analysis * The isomers were separated on silica gel and alumina columns using hexane as eluting solvent

The method developed for the preparation of 4-aryl-*m*-carboranes made it possible to evaluate quantitatively the electronic effects due to the 4-*m*-carboranyl group Data [12,13] on ionization constants of 4-oxy-, amino-, and carboxy-*m*carboranes offer a means of only qualitative assessment of the electronic characteristics of the 4-*m*-carboranyl group

Oxidation of 4-(p- and m-tolyl)-m-carboranes with chromium anhydride in acetic acid by the published procedure [4,5] yields 4-(p- and m-carboxyphenyl)-m-carboranes (eq. 2)

$$HCB_{10}H_{9}(C_{6}H_{4}CH_{3})CH \xrightarrow[CrO_{3}]{CH_{3}COOH} HCB_{10}H_{9}(C_{6}H_{4}COOH)CH \qquad (2)$$
$$\underset{\substack{H_{2}SO_{4}\\ 20^{\circ}C}}{H_{2}O^{\circ}C}$$

Ionization constants of 4-(p- and m-carboxyphenyl)-m-carboranes in 75% ethanol were determined and the Hammett constants σ_p and σ_m for the 4-mcarboranyl group were calculated (Table 1) The Hammett constants for the 2-m-carboranyl group known from the literature [8] are given for comparison It is seen from Table 1 that the 4-m-carboranyl group, unlike the 2-m-carboranyl group which is an electron-accepting substituent, possesses neither electrondonating nor electron-accepting properties This phenomenon can be attributed to the distribution of electron density over the m-carborane nucleus [4] Weak electron-accepting properties of the 2-m-carboranyl group are explained by the presence of the partial positive charge (+0 09) on the boron atom B(2), while a practical absence of the charge (+0 02) on B(4) atom explains the fact that the 4-m-carboranyl group possesses neither electron-accepting nor electron-donating properties The similarity of the constants σ_p and σ_m allows us to conclude that the 4-m-carboranyl group will display an inductive effect

Taft's method based on the measurement of ¹⁹F chemical shifts in the NMR spectra of fluorophenylcarboranes, proved greatly informative for the carborane series. This method has been applied successfully to the evaluation of electronic effects of 1-o- [6,16], 1-m- [6,16], 1-p- [17], 3-o- [6,7], 4-o- [10,11], 9-o- [10,11], and 2-m- [8] carboranyl groups NMR spectra [19] of 4-(p- and m-fluorophenyl)-m-carboranes in a number of solvents were taken

^{*} Data on X-ray analysis of 4-aryl-m-carboranes will be given in a separate communication

TABLE 1

pK_a	Hammett s constant	
6 53	0 02	
6 66	0 02	
6 58	0	
5 32	0 1 5	
6 34	014	
	pK _a 6 53 6 66 6 58 5 32 6 34	pK _a Hammett s constant 6 53 0 02 6 66 -0 02 6 58 0 5 32 0 15 6 34 0 14

APPARENT IONIZATION CONSTANTS OF SUBSTITUTED BENZOIC ACIDS (RC₆H₄COOH) IN 75% ETHANOL AND HAMMETT S CONSTANTS σ_p AND σ_m FOR R GROUPS

and inductive and resonance constants were calculated for the 4-m-carboranyl group (Table 2) The inductive constant of the 4-m-carboranyl group, like the Hammett constant, is close to zero

As distinct from ¹⁹F chemical shifts in NMR spectra of 4-fluorophenyl-o-carboranes [10,11], clear shift-solvent dependence in 4-fluorophenyl-m-carboranes was not observed even though the m-carborane molecule is able to form hydrogen bonds with aprotic solvents [6,18] This may be due to the fact that the hydrogen bond formation energy is lower for m-carboranes than for o-carboranes and, as a result, the influence of this bond on shielding the fluorine atom in the benzene ring is insignificant

It is interesting to note that the electronic effect due to the 4-o-carboranyl group ($\sigma_p = \sim 0.05$, $\sigma_m = -0.03$, $\sigma_i = -0.04$) is close to that of the 4-m-carboranyl group (the present paper) The 4 positions in the m-carborane (6, 8, 11) and o-carborane molecules (5, 7, 11) are equatorial and, according to calculated data [14], serve as a boundary between oppositely charged skeleton atoms of an icosahedron Positions 1,2 (C atoms), 3,6 (B atoms) in o-carborane and positions 1,7 (C atoms), 2,3 (B atoms) in m-carborane carry a partial positive charge, and carboranyl groups linked through these atoms display an electron-accepting effect Partial negative charges are concentrated on boron atoms in positions 8, 9, 10, 12 of o-carborane and in positions 5, 9, 10, 12 of m-carborane and therefore one should expect that carboranyl groups will display an electron-donating effect The latter has been experimentally confirmed by the investigation of the electronic effect of the 9-o-carboranyl group [10]

AND CALCULAT	ΈD σ CONSTAI	NTS FOR THE 4	-m CARBORAN	YL GROUP	
Solvent	δ_{p}^{F}	δ_m^F	σι	σ_R^0	
CCl ₄	0 1 5	0 90	0 04	0 02	
Dioxane	0 55	0 90	-0 04	0 01	
THF	07	06	0	0	
Hexametapol	11	0 83	-0 03	-0 01	

TABLE 2

CHEMICAL SHIFTS ^a OF ¹⁹F NUCLEI IN THE NMR SPECTRUM OF 4-FLUORENYL-m CARBORANE AND CALCULATED g CONSTANTS FOR THE 4-m CARBORANYL GROUP

^a ppm relative to fluorobenzene

Compound	7m (00)	h ound	(<i>%</i>)			Pormula	Calculat	ed (%)			וו אאת 1
		د	н	В	í:		10			-	spectra "
4 Phunyl m carborane 1 (m Trolyh-m carbo	36 5-17	43 69	734	48 65	-	C8II ₁₆ B ₁₀	43.61	7 32	49 06	-	3 0 (CH(2))
rane	61-62	46 18	7 70	46 12		C9H ₁₈ B ₁₀	4613	7 74	46 13		7 35 (C ₆ H ₅ (5)) 2 3 (CH ₁ (3)), 2 92 (CH(2)),
4 (m-Tolyl) m carbo											7 30 (C ₆ H ₄ (4))
rane	5052	16 10	7 78	45 93							2 3 (CH ₃ (3)), 2 90 (CH(2)),
4 (p Fluorophenyl)											7 30 (C ₆ H ₄ (4))
m carborane	50-56 5	10 45	6 31	45 41	787	:		1	:		3 1 (CH(2)),
4 (m Fluorophenvl) m carboranc ^b				45 44		C8111515101	404	6 35	454	1 99	7 35 (C ₆ H ₄ (4)) 3 1 (CH(2)), 7 20 (C ₁ U (4))
4 (p Carbox yphenyl)				L 1							1 40 (0014(4))
m carborane	200-201	40 73	615	40 73							
4 (m Carboxyphenyl)						C9II ₁₆ B1002	40 89	6 10	40.90		
carborane	234-235	40 87	6 01	40 54							

394

TABLE 3

Experimental

The purity of initial compounds and products was controlled by gas-liquid chromatography on a "Tsvet-4" chromatograph at 230–250°C, columns (2 m, I D 4 mm) being filled with celite-425 treated with 15% silicone-301 Column and thin-layer chromatography was performed on neutral alumina, 100–160 μ m silica gel and on plates with fixed layer of "Silufol" silica gel Measurements of pH were made on LPU-01 pH meter with a glass electrode A silver chloride electrode was used as a reference Titration and calculation followed the published procedure [19] Measurement of ¹⁹F chemical shifts in NMR spectra was conducted as in the literature [6]

General procedure for the gas phase thermal isomerization of 3-aryl-o-carboranes in vacuum

3-Aryl-o-carborane was evaporated under 1 mmHg vacuum and the vapours passed through a quartz tube (d = 20 mm, l = 0.5 m) heated to $580-600^{\circ}$ C A mixture of 2- and 4-aryl-*m*-carboranes was obtained in 80-90% yield The isomers were separated by column chromatography on silica gel using hexane as the eluting solvent

Melting points, parameters of ¹H NMR spectra taken in CCl₄ and results of elemental analysis of the compounds obtained are presented in Table 3

Oxidation of 4-tolyl-m-carborane

To a solution of 1 g of 4-tolyl-*m*-carborane in a mixture of 60 ml of CH_3COOH 15 ml of $(CH_3CO)_2O$ and 3 ml of concentrated H_2SO_4 at 20–25°C was added gradually 6 g of CrO_3 with stirring After 2 h the reaction mixture was poured into 0 5 l of cold water The precipitate formed was filtered off and dried over P_2O_5 The acid was sublimated under vacuum and recrystallized from an ethanol water mixture to give a yield of 65%

Melting points and results of elemental analysis of the acids obtained are given in Table 3

References

- 1 V N Kalının N I Kobel'kova and L I Zakharkın Zh Org Khum 48 (1978) 938
- 2 M F Hawthorne and P A Wegner J Amer Chem Soc 90 (1968) 896
- 3 MF Hawthorne and PA Wegner J Amer Chem Soc, 87 (1965) 4392
- 4 LI Zakharkin VN Kalinin and IP Shepilov Izv Akad Nauk SSSR Ser Khiri (1966) 1286
- 5 L I Zakharkin V N Kalinin and I P Shepilov Dokl Akad Nauk SSSR 174 (1967) 606
- 6 L I Zakharkin V N Kalinin A P Snyakin and B A Kvasov J Organometal Chem 18 (1969) 19
- 7 R G Adler and M F Hawthorne J Amer Chem Soc 92 (1970) 6174
- 8 L I Zahkarkin and V N Kalinin Zh Org Khim 43 (1973) 853
- 9 V N Kalinin N I Kobel'kova and L I Zakharkin Zh Org Khim 47 (1977) 963
- 10 V N Kalının N I Kobel'kova A V Astakhın and L I Zakharkın Izv Akad Nauk SSSR (1977) 2376
- 11 V N Kalinin, N I Kobel'kova A V Astakhin A I Gusev and L I Zakharkin, J Organometal Chem 149 (1978) 9
- 12 LI Zakharkin VN Kalinin and EG Rys Synth React Inorg Met-Org Chem 5 (1975) 257
- 13 L I Zakharkin V N Kalinin and N I Kobel'kova Synth React Inorg Met-Org Chem 6 (1976) 91
- 14 F Thomas W Koetzle abd W N Lipscomb Inorg Chem 9 (1970) 2743
- 15 R W Taft E Price IR Fox JC Lewis KK Andersen and JT Davis J Amer Chem Soc 85 (1963) 3146
- 16 MF Hawthorne TE Berry and PA Wegner J Amer Chem Soc, 87 (1965) 4746
- 17 L I Zakharkin V N Kalinin and E G Rys Izv Akad Nauk SSSR Ser Khim (1974) 2632
- 18 L E Vinogradova L A Leytes V N Kalinin and L I Zakharkin Izv Akad Nauk SSSR Ser Chim (1969) 2847
- 19 A Albert and E P Sergeant, Ionization Constants of Acids and Bases Wiley New York, 1962